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SUMMARY 

The ef fec t  of free-stream Reynolds number, engine ins ta l la t ion ,  and 
model scale on i n l e t  s t a b i l i t y  limits and on the amplitude and frequency 
of buzz a re  presented. The data were taken at a free-stream Mach number 
of 2 .0  and angles of attack from 0' t o  6'. 

Subcri t ical  s t a b i l i t y  w a s  not affected when the Reynolds number 
(based on cowl diameter a t  the l i p )  was reduced from 9.QMO 
by decreasing the free-stream tunnel pressure. However, a fur ther  reduc- 
t i on  in  Reynolds number t o  1.71MO resulted in  an increase of subcrit-  
i c a l  s t a b i l i t y .  
ent of Reynolds number, buzz amplitude varied with Reynolds number. 
ues of amplitude and frequency increased a t  a f a s t e r  r a t e  and reached a 
higher value f o r  the engine than for the  ful l -scale  cold pipe. The sub- 
c r i t i c a l  s t a b i l i t y  obtained both with the engine and with a quarter- 
scale cold-flow i n l e t  was greater than that obtained with the ful l -scale  
cold pipe. 

6 6 t o  2.4Xl.O 

6 

Although the frequency of buzz appeared t o  be independ- 
V a l -  

INTRODUCTION 

Pulsing of supersonic inlets has long been observed, and several 
theories have been advanced t o  explain t h i s  aerodynamic phenomenon (refs.  
1 t o  3 ) .  The pulsing character is t ics  and i n l e t  performance are  usually 
obtained from small-scale models u t i l i z ing  an ex i t  plug i n  place of the 
engine. 
configuration 

These resu l t s  are  applied d i rec t ly  t o  the fu l l - sca le  engine 

As  noted in reference 4, t e s t s  on a ful l -scale  i n l e t  at Mach 1.8 
and 2.0 indicated that the s t a b i l i t y  limits of the in l e t  were increased 
by replacing the ex i t  plug used f o r  cold-flow tes t ing  with a J34 turbojet  
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engine. In fur ther  cold-flow tests made on the same in l e t  (ref. 5) in- 
l e t  s t a b i l i t y  limits were obtained f o r  three different  choking s ta t ions 
downstream of the in l e t .  T6e s t a b i l i t y  limits obtained with the engine 
were not precisely duplicated with any of the  cold-pipe designs; how- 
ever, the data indicate the poss ib i l i ty  of approximating the engine if 
the correct cold-pipe configuration is used. 

An investigation was made in the L e w i s  10- by 10-foot supersonic 
wind tunnel with a turbojet  engine of more advanced design than the 534 
engine of reference 4 in combination with an ax ia l ly  symmetric i n l e t  
t ha t  had a blunt l i p  and a t ranslat ing spike. The investigation of the 
fu l l - sca le  in l e t  w a s  conducted both with the engine instal led and with 
an e x i t  plug ( r e f .  6 ) .  
the tunnel pressure a l t i tude  from 49,000 t o  85,000 f e e t .  
scale cold-pipe resu l t s  are compared in  t h i s  report with the quarter- 
scale resu l t s  of reference 7 .  

Cold-flow Reynolds number w a s  varied by changing 
The f u l l -  

Presented herein axe the  e f f ec t  of free-streamReynolds number, 
engine instal la t ion,  and model scale on i n l e t  s t a b i l i t y  limits and on 
the amplitude and frequency of buzz. 
Mach number of 2 . 0  and angles of attack from 0' t o  6'. 

Data are presented at  a free-stream 

SYMBOLS 

A 

m 

P 

P 

The following syrribols are used in t h i s  report: 

rO 

Re 

flow area 

mass flow, slugs/sec 

t o t a l  pressure, lb/sq f t  

s t a t i c  pressure, lb/sq f t  

amplitude r a t i o  as a percent of tunnel t o t a l  pressure 

Reynolds number, based on i n l e t  cowl diameter 
( ful l -scale  i n l e t  cowl diameter equals 2.56 f t )  

cowl-lip-position parameter defined as angle between 
axis of spike and l i n e  joining cone apex and cowl 
1 ip 
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Subscripts : 

max maximum 

3 

min minimum 

0 f r ee  stream. 

1 cowl in l e t  

2 diffuser  discharge or compressor i n l e t ,  s ta t ion  81.4 

APPARATUS AND PROCEDURE 

The m o d e l  consisted of an inlet located ahead of either a cold pipe 
or a turbojet  engine as shown i n  figure 1. Relative s ize  of the instal- 
la t ion  i n  the  10- by 10-foot supersonic tunnel i s  indicated by the photo- 
graph of figure 2. 

The inlet had a remotely actuated t ranslat ing 25' half-angle spike, 
with a blunt- l ip  cowl. Three subinlets were located in  the diffuser and, 
f o r  the data in t h i s  report ,  were operated f u l l  open and choked. A com- 
p le te  description of the blunt l i p  and subinlets i s  given i n  reference 6. 
Variation of i n l e t  flow area is given i n  figure 3. 

The engine had a seventeen-stage axial-flow compressor and a three- 
stage turbine.  The s ta tors  i n  the first seven stages of the  compressor 
were variable; 
compressor-inlet temperature. 
level  position and biased by exhaust gas temperature. 

they were positioned by sensing engine speed and 
The variable nozzle is  scheduled by power 

Dynamic pressure transducers were located a t  several  longitudinal 
s ta t ions in  the engine and cold-pipe configurations ( f i g .  1) in  order t o  
detect amplitude and frequency of pulsation. The t races  from the pres- 
sure pickups were recorded on opt ical  and pen-type i n s t m e n t s .  The 
natural  frequency of the opt ical  recorder was  about 100 cycles per second, 
and the natural  frequency of t he  pen type was  about 50 cycles per second. 

Minimum s t a b i l i t y  curves f o r  t h e  cold-flow configuration were ob- 
tained i n  the following manner: 
Qz, the  plug was moved t o  reduce mass flow u n t i l  the in l e t  terminal 
shock, as observed by schlieren and dynamic pressure pickups, jus t  
s ta r ted  t o  osc i l la te .  The plug posit ion was noted, and the plug was  
retracted,  then extended as closely as possible t o  the previous position 
without actual ly  putting the inlet into buzz. For the  engine configura- 
t ion,  i n l e t  mass flow was  decreased by reduckg engine speed u n t i l  a 
pulse amplitude, as a specified percent of tunnel t o t a l  pressure, was 
indicated on the recorder. 

For each cowl-lip-position parameter 
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Free-stream Reynolds number was  changed by varying the tunnel pres- 

Table I gives the range covered f o r  zero angle of attack as sure leve l .  

sure a l t i t ude  f o r  the  same Reynolds number at standard-day temperatures 
and Mach 2 .0 .  
about 545' R f o r  a l l  the data.  

well as the corresponding pressure a l t i tude  of the tunnel and the pres- 
*A4 

The t o t a l  temperature i n  the tunnel w a s  maintained at  

The subcr i t ica l  inlet mass flows f o r  the cold-pipe configuration 
were calculated by m e a n s  of the s t a t i c  pressure and area a t  the  ex i t  
plug. Subcri t ical  mass flows f o r  the engine configuration were deter- 
mined by using the engine airflow curve. Mass flows thus obtained are 
believed t o  be accurate t o  &2 percent. 

RESULTS AND DISCUSSION 

Free-Stream Reynolds Number Effect 

The e f fec t  of free-stream Reynolds number on the in l e t  s t a b i l i t y  of 
the  fu l l - sca le  cold-pipe configuration i s  presented in figure 4. 
appreciable difference in  s t a b i l i t y  limits was apparent between Reynolds 

6 6 numbers of 9.OXlO and 2.4Xl.O at  zero angle of attack. Although not as 
complete a range of data was  taken, no noticeable differences were found 
at  higher angles of a t tack f o r  the same Reynolds number range. 

No 

L-. 
6 A reduction i n  Reynolds number t o  about 1.71.XlO had the  e f fec t  of 

increasing subcr i t ica l  s t a b i l i t y  f o r  a l l  angles of attack. The increase 
i n  s t a b i l i t y  occurred a t  low values of cowl-lip-position parameter 
f o r  zero angle of a t tack ( f ig .  4 (a ) )  and at high values of 
of 3' and 6' ( f igs .  4(b) and ( e ) ) .  This e f fec t  occurs at a tunnel pres- 
sure a l t i tude  of about 85,000 f e e t  ( table I).  
pressure a l t i t ude  f o r  the same Reynolds number a t  standard-day conditions 
and Mach 2 .0  is  about 76,000 f ee t .  

El2 
ex f o r  angles 

- 
The corresponding f l i g h t  

Schlieren observations at zero angle of attack, a Reynolds number of 
2.4X106, and a ex value of 37.75O showed that ins tab i l i ty  was  appar- 
ent ly  "triggered" by the impingement of the vortex sheet on t h e  cowl l i p  
while, at a higher value of e2  (40.7'), vortex-sheet passage over the 
cowl l i p  had no effect .  The ob l i  ue shock off the cone f a l l s  inside the 
cowl l i p  above a ex of about 41 . When the Reynolds number was reduced 
t o  1.71x106, vortex-sheet impingement on or over the cowl l i p  at a 
value of 37.75O had no ef fec t  on s t a b i l i t y .  

8 
81 

The supercr i t ical  flow indicated i n  f igure 4 varies with e2. This 
variation i s  the r e su l t  of increasing spi l lage by the oblique shock as $'A 

flow r a t i o  from reaching unity.  
O 2  i s  decreased. Spillage caused by the blunt l i p  prevents the mass- 

%?.. 
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Data were taken while going into buzz fo r  two values of Qz and at  
zero angle of attack t o  determine the buzz amplitude and frequency f o r  
the cold pipe. These data are  given i n  f igure 5 f o r  Qz values of 
37.75' and 40°. While the mass-flow ra t ios  a t  which buzz is in i t i a t ed  
did not change f o r  a reduction of Reynolds number t o  2.4XL06 and a Qz 
value of 37.75', the  buzz amplitude did vary ( f ig .  5(a> ) . 
olds number w a s  reduced t o  1.71MO , no buzz was encountered down t o  a 
mass-flow r a t i o  of about 0.49, where buzz started abruptly and reached 
a high value very quickly. Re 5 ZXlO') showed 
tha t  the terminal shock f lu t t e r ed  as the vortex sheet passed over the 
cowl l i p  and continued t o  do so u n t i l  the  vortex sheet w a s  well inside 
the cowl. However, the f l u t t e r  was not strong enough t o  be sensed 
through the pressure pickups and was not considered a buzz condition. 

As  the Reyn- 
6 

V i s u a l  observation ( a t  

Buzz, at  a higher value of Qz ( f ig .  5(b)) ,  s tar ted at  about the  
same mass-flow r a t i o  for both Reynolds numbers ( 2  .4X106 and 1. 7 1 U 0 6 ) .  
The amplitude of buzz measured f o r  both numbers increased at  about the 
same ra te .  

Frequency of buzz at  a l l  Reynolds numbers and f o r  both values of 
Qz (37.75' and 40') increased rapidly and reached a maximum of about 10 
cycles per second. Closed-end-pipe theory indicates a fundamental f r e -  
quency of about 10 cycles per second f o r  the ful l -scale  exit-plug 
configuration. 

Pulsing t races  obtained with the cold pipe are shown in figure 6. 
Although the pulse t race was nearly sinusoidal f o r  low pulse amplitude 
( f ig .  6 (a) ) ,  presence of a t h i r d  harmonic can be seen on the t race at 
the diffuser  discharge. The modification by the t h i r d  harmonic a t  the  
diffuser  discharge became more evident when the amplitude of buzz w a s  
fur ther  increased ( f ig .  6 (b) ) .  A t  the  lower Reynolds number of 1.71MO 
( f ig .  6 (c ) ) ,  buzz s ta r ted  i n i t i a l l y  with the predominant frequency mod- 
if ied by the th i rd  hamonic. 

6 

The shape of the  pressure wave f o r  both Reynolds numbers w a s  mod- 
i f i ed  f a r the r  back in the nacelle and seemed t o  approach a square wave 
at the exit-plug s ta t ion.  The change i n  shape of the  pressure osci l la-  
t i on  from s ta t ion  t o  s ta t ion  could possibly be due t o  a phase s h i f t  be- 
tween the first a d  th i rd  harmonic evident at  the diffuser discharge. 
It is  interest ing t o  note tha t ,  f o r  these data, the amplitude of buzz 
increased with increasing nacelle s ta t ion.  Similar data, previously 
obtained from another fu l l - sca le  nacelle ( r e f .  8) , indicated no consist- 
ent trend of amplitude increase or decrease with increasing nacelle 
s ta t ion .  
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Model Scale 

A comparison of the quarter-scale-model s t a b i l i t y  limits with those .w 

of the fu l l - sca le  model i s  made i n  f igure 7 at angles of a t tack  of 0' t o  
6 O .  
s t a b i l i t y  than the fu l l - sca le  in l e t  and reached complete s t a b i l i t y  at  a 
lower value of e t .  

Buzz information was obtained on the quarter-scale m o d e l  ( r e f .  7 )  
by putting the i n l e t  into buzz and by defining the buzz l imi t  as the  
point a t  which buzz stopped when the  mass-flow r a t i o  was increased. 
Hysteresis effects ,  i n  comparing the  data t o  the ful l -scale  model, are 
believed t o  be small; however, any hysteresis effect  present w i l l  in- 
crease the difference in  s t a b i l i t y  limits. Also, the quarter-scale model 
did not have subinlets,  whereas the ful l -scale  configuration has three 
t h a t  were f u l l  open f o r  the  s t a b i l i t y  data. 
energy air  through the subinlets possibly had an effect  on buzz limits. 

A t  a l l  angles of attack, the quarter-scale model had more subcr i t ica l  

The removal of the low- 

The physical dimensions of t he  quarter-scale m o d e l  t o  the diffuser  
a re  accurately proportioned t o  those of the f u l l -  discharge (s ta t ion 2 

scale configuration t table  11). However, the  length (and consequently 
the volume) t o  the choke point of the ful l -scale  model exceeds tha t  of the 
corresponding scaled-up value calculated from the quarter-scale config- 
uration by about nine feet  or about four i n l e t  diameters. Although the 
data are  limited in application and should be recognized as such, quarter- 

the ful l -scale  configuration. 
with a similar trend noted w i t h  a ful l -scale  configuration i n  reference 5.  

scale complete s t a b i l i t y  is reached a t  a lower value of O1 than tha t  of ILTr 

This effect  of length and volume agrees 

1 

I n  figure 8, a comparison i s  made of the amplitude and the frequency 
of quarter-scale and ful l -scale  configurations fo r  a value of 37.75O 
a t  about the same Reynolds number. I n i t i a l l y ,  the pressure amplitude in- 
creases a t  about the same r a t e  f o r  both configurations; however, the pres- 
sure amplitude values fo r  the fu l l - sca le  configuration are l e s s  than the 
quarter-scale values at  low mass-flow ra t ios .  The frequency of the 
quarter-scale configuration r i s e s  t o  B much greater value than tha t  of 
the ful l -scale  configuration and approximates the fundamental closed-end- 
pipe theory of about 65 cycles per second. 

Effect of Engine on S tab i l i t y  

Reference 4 indicates tha t  a 534 engine had a s tab i l iz ing  e f fec t  on 
subcr i t ica l  i n l e t  s t ab i l i t y ,  compared with an exit-plug configuration. 
This  effect  was also observed w i t h  the turbojet  engine tes ted i n  this  
investigation, as shown by the r e su l t s  i n  f igure 9. The engine i n l e t  

reached complete s t a b i l i t y  at a lower value of 
configuration. 

configuration at all angles of attack had more subcri t ical  s t a b i l i t y  and UI 

than the exit-plug 
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A comparison of the i n l e t  buzz frequency and amplitude f o r  the ex i t -  
plug configuration and fo r  the  engine configuration at zero angle of 
a t tack  is presented i n  f igure 10. 
at the compressor inlet increased a t  a f a s t e r  r a t e  and reached higher 
values w i t h  the engine than w i t h  the cold pipe. 
at  s l i gh t ly  d i f fe ren t  values of 
These values of frequency and amplitude w e r e  obtained with pen-type re- 
cording instrumentation. 

The amplitude and’frequency of buzz 

Although these data are  
e l ,  it is f e l t  that the  trends are  va l id .  

Damping of buzz through the engine is qui te  similar t o  the J34 en- 
gine data reported i n  reference 8. Oscil lations in  terms of absolute 
pressure were amplified through the compressor ( f ig .  l l (a )  ); however, f o r  
windmilling conditions, the engine damped pressure osc i l la t ions .  Since 
the absolute pressure increased, t o t a l  amplitude as a percent of l oca l  
pressure was great ly  reduced by the compressor ( f i g .  l l ( b )  1.  The same 
trend was  noted f o r  the 534 engine. 

The osc i l la t ions  were completely damped by the time the f l o w  reached 
the turbine discharge s ta t ion  ( f ig .  l l ( b ) ) ,  whereas it was  observed that,  
f o r  the J34 engine, pressure osc i l la t ions  existed downstream of the  tu r -  
bine. For the  present investigation, frequency of pulsation was  not 
changed in  going through the ccenpressor ( f ig .  l l ( c ) ) .  
constant of t he  engine is about 1 t o  2 seconds, the amplitude of t he  
engine-speed osci l l&ion would be negligible at a buzz frequency of 14 
t o  24 cycles per second. 

Because the time 

Pulsation traces are shown i n  f igure 12  f o r  operating points A, B, 
and C of f igure  l l ( c )  . 
with the  pen-type recorder, whereas data at the other s ta t ions  were ob- 
ta ined w i t h  an opt ica l  type that had a d i f fe ren t  recording speed. 
frequency of about 100 cycles per second, which might be associated w i t h  
coq res so r  rotat ion,  was  superimposed on the predominant frequency of t he  
compressor discharge. 

The data at  the compressor face were obtained 

A 

SUMMARY (IF RESULTS 

The following results w e r e  observed i n  an investigation on the  ef- 
f ec t s  of free-stream Reynolds number, engine ins ta l la t ion ,  and model 
scale on the s t a b i l i t y  character is t ics  of a translating-spike in l e t  at 
Mach 2.0: 

1. Subcri t ical  s t a b i l i t y  increased when Reynolds number (based on 
6 i n l e t  capture diameter) was reduced below 2.4XLO 

s t a t i c  pressure. 
by lowering tunnel 

2. Frequency of buzz appeared t o  be independent of Reynolds numb’er, 
but buzz amplitude w a s  affected by Reynolds number. 
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3. Subcri t ical  s t a b i l i t y  of t he  fu l l - sca le  i n l e t  at angles of 

a t tack  from 0' t o  6O was  greater with the  engine than with the e x i t  plug. 
u 

4. The amplitude and frequency of buzz increased a t  a faster rate 
and reached a higher value when t h e  turbojet  engine was used instead of 
an exit plug. 

5. Subcri t ical  s tabi l i ty  of t h e  quarter-scale i n l e t  was  greater  at 
a l l  angles of a t tack  tested than t h a t  obtained with the  fu l l - sca le  inlet .  

Lewis  Fl ight  Propulsion Laboratory 
National Advisory Committee f o r  Aeronautiys 

Cleveland, Ohio, June 7, 1957 
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Reynolds 
number 

TABLE I. - mYNOLDS NUMBER RANGE 

Tunnel 
total 
pressure, 

lb/sq ft abs 

9.0x106 

6.7 

1950 

1450 

7 75 

520 

3 70 

Tunnel 
pressure 
altitude, 

ft 

49 x103 

55 

69 

77 

85 

Flight pres sure 
altitude 

ft 
(a> 

42x103 

48 

6 1  

69 

76.5 

&Standard-day conditions; Mach 2.0. 

TABLE 11. - LENGTHS AND VOLUMES OF COLD-PIPE CONFIGURATIONS 

Length to 
compressor face, ft 

Length to 
choke point, ft 

Volume to 
compressor face, cu ft 

Volume to 
choke point, cu ft 

Quarter-scale 
model 

1.77 

4.15 

43 

1.18 

Theoretical full- 
scale measurements 
calculated from 

quarter-scale model 

7.08 

16.6 

28.5 

76.5 

Actual 
full-scale 
model 

7.08 

25.5 

28.5 

=107.0 
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(b) Angle of attack, 3’; amplitude, 0 percent. 
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Cowl-lip-position parameter, G I ,  deg 

(c) Angle of attack 

Figure 4. - Effect of Reynolds n stability limits f o r  cold pipe. 

13 



14 NACA RM E57D17 

0 0 0 0 co * cu 



.d a 

c, 
k 
d m 
\ 

5 
0 
Lo 
rl 

K 
I f 

c, 
k 
0' m 
\ 

f: 
(u 
W 
rl 

pl 

-P 
k 

d rn 
\ 

5 
cn cn 
rl 

? 
c, rn 
d m 
\ 

f: 
0 
0 
rl 

15 



16 

0 2 
0 d 
i-' 
m 

6 
rl 
% 

m m 
m 
L 

NACA RM E57D17 

1.0 

.9 

I ( L - N l  I I I I I I I I I I I I I I 
I I 3 v T I  I I I Model Reynolds number I 

.8 
Full scale 2.4X1O6 to 9.0X106 

mmn Quarter scale 

. 7  

.6 

.5 

(e) Angle of attack, 6O;  amplitude, 5 percent. 

Figure 7. - Effect of model scale on stability limits for cold-pipe 
configurations. 
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.a 

Model Reynolds number 

0- - V Quarter scale 3.13d06 

0-a Full  scale 3.58~10~ 
40 

20 

0 

4 

.4 .5 .6 .7 .8 
Mass-flow r a t i o ,  ml/% 

Figure 8. - Effect of model scale on buzz amplitude and frequency. 
Angle of attack, Oo; cowl-lip-position parameter, 37.75'. 
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Cold pipe 2.4X1O6 to 9 . 0 ~ 1 0 ~  
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!&?X&E Supercritical mass flow 

(b) Angle of attack, 3'; amplitude, 7 percent. 
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Cowl-lip-position parameter, 0 2 ,  deg 

(c) Angle of attack, 6'. 

Figure 9. - Effect of engine on stability limits. 
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Mass-flow ra t io ,  ml/mo 

Figure 10. - Effect of engine on buzz amplitude and frequency. 
Angle of attack, O o j  Reynolds number, 6.7x1O6. 
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1200 %-, Engine windmilling 
I I 

\ 
0 Compressor face 

a Compressor discharge 
1000 

.4 .5 .6 .7 .8 
Mass-flow ra t io ,  ml/w 

(a) Absolute t o t a l  amplitude. 

Figure 11. - I n l e t  pulsing and pressure pulse 
propagation through engine. 
0'; cowl- lip-posi t ion  parameter, 3 7.30. 

Angle of attack, 
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(b) Relative total amplitude. 

(e) Frequency characteristics. 

Figure 11. - Concluded. Inlet pulsing and pressure pulse propaga- 
tion through engine. 
parameter, 37.3'. 

Angle of attack, O o j  cowl-lip-position 
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